

ME 323: FLUID MECHANICS-II

Dr. A.B.M. Toufique Hasan

Professor

Department of Mechanical Engineering

Bangladesh University of Engineering & Technology (BUET), Dhaka

Lecture-11

09/12/2024

Blow Down Process

toufiquehasan.buet.ac.bd toufiquehasan@me.buet.ac.bd

Problem

An air tank of volume 1.5 m³ is at 800 kPa and 20°C when it begins exhausting through a converging nozzle to sea-level condition p = 100 kPa. The throat area is 0.75 cm². Estimate:

- 1) Initial mass flow rate
- 2) Time to blowdown to 500 kPa and mass flow rate at this condition
- 3) Time when the nozzle ceases being choked and mass flow rate at this conditions
- 4) Graphically show the unsteady process until the nozzle is choked.

$$t \approx 1.75 \ \frac{V}{a_0 A_e} ln\left[\frac{p_{0,0}}{p_{0,t}}\right]$$

Fluid dynamics to explore

Beyond the earth, toward Mars

The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of **Carbon dioxide (95%)**, nitrogen (2.85%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and noble gases. TABLE I. Characteristics of Martian and Earth's atmospheric environment.

Features	Mars	Earth
Acceleration of gravity (m/s ²)	3.72	9.78
Atmospheric pressure (Pa)	640	101 300
Air density (kg/m ³)	0.0167	1.22
Mean temperature (°C)	-63	15
Sound velocity (m/s)	227	340
Atmospheric dynamic viscosity [kg/(m s)]	1.289×10^{-5}	1.789×10^{-5}
Atmospheric constants (J/kg/K)	188	287
Specific heat capacity ratio(γ)	1.29	1.40
Molar mass (g/mol)	44.01	28.96

Challenges in designing air vehicle in Mars:

- Low Re
- Compressibility, rarefaction
- C_L, C_D ???

